1. W. Cao, L. Székelyhidi Jr.; Global Nash-Kuiper theorem for compact manifolds, To appear in J. Differential Geom. 2. W. Cao, F. Huang, D. Wang; Isometric immersions of surfaces with two classes of metrics and negative Gauss curvature, Arch. Ration. Mech. Anal. 218(3): 1431-1457, 2015 3. W. Cao, L. Székelyhidi Jr.; C^{1,α} isometric extensions. Comm. Partial Differential Equations 44 (7) 613-636, 2019. 4. W. Cao, ; P. Jiang, Global bounded weak entropy solutions to the Euler-Vlasov equations in fluid-particle system. SIAM J. Math. Anal. 53 (2021), no. 4, 3958–3984. 5. W. Cao, F. Huang, D. Yuan; Global entropy solutions to the gas flow in general nozzle, SIAM J. Math. Anal. 51(4), 3276-3297, 2019. 6. W. Cao, F. Huang, D. Wang; Isometric immersions of surfaces with negative Gauss curvature and Lax-Friedrichs scheme, SIAM J. Math. Anal. 48(3), 2227-2249, 2016. 7. W. Cao, T. Wang; Vanishing viscosity limit for viscous Burgers-Vlasov equations, Commun. Math. Sci. 18(4),1135-1148, 2020. 8. H. Yu, W. Cao; Global weak solutions to inviscid Burgers-Vlasov equations, Commun. Math. Sci. 18(4), 1087-1103,2020. 9. W. Cao, L. Székelyhidi Jr.; Very weak solutions to the two-dimensional Monge-Ampére equation, Sci. China Math. 62(6), 1041-1056, 2019. 10. W. Cao; The semi-global isometric embedding of surfaces with curvature changing signs stably. Proc. Amer. Math. Soc., 147(10), 4343-4353, 2019. 11. W. Cao; Global BV entropy solutions to the Gauss-Codazzi system, J. Math. Anal. Appl. 444 (2), 1015-1026, 2016. 12. W. Cao, F. Huang, T. Li, H. Yu; Global entropy solutions to an inhomogeneous isentropic compressible Euler system. Acta Math. Sci. 36 (B)(4), 1215-1224, 2016. 13. W. Cao, F. Huang; On the convergence rate of a class of reaction hyperbolic systems for axonal transport, Acta Math. Sci., 35 B(4): 945-954, 2015. |
1. Colloquium talk, YMSC, Tsinghua Univerisity, Nov. 29, 2019 2. PDE Forum: Modeling and Analysis, University of Pittsburgh, Pittsburgh, May 6, 2019 3. The First National PDE Doctoral Forum, Fudan University, Shanghai, Nov. 9-11, 2018 4. The second Chinese-Czech Conference on Mathematical Fluid mechanics, Institute of Mathematics of the Czech Academy of Sciences, Prague, Sep. 17-21, 2018 |